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Abstract — The present paper proves for the first 

time that retarded gravitational interaction leads in 

general to an apsidal precession in the two-body 

problem. For this, the retarded gravitational 

potential of a translating and rotating sphere is 

analytically derived to second order in cv /  for a flat 

space-time metric. Integration over a complete 

Kepler orbit via a perturbation approach yields then 

the corresponding perihelion precession in analytical 

form as a function of the usual orbital elements and 

the radius and spin frequency of the central mass. 

Applied to the solar system, all planets show a 

retrograde precession due to the retardation effect, 

with Mercury and Mars having the highest values of 

-0.3”/cy and -0.002”/cy respectively (assuming the 

speed of gravity as the speed of light). With those 

values significantly above the error level of recent 

observational data for the solar system, the effect 

should therefore be highly relevant for the 

calculation of high precision ephemerides. Besides, it 

could offer a convenient method to constrain the 

speed of gravity and at the same time provide a 

further test of the theory of General Relativity. 

 
Index Term s— retarded potentials, two-body problem, speed of 

gravity, perihelion precession, solar system dynamics, 

ephemerides 

 

1. INTRODUCTION 

 

ince the times of Newton, the calculation of 

planetary orbits has always been based on the 

assumption that all masses in the solar system interact 

instantaneously with each other. Whilst Newton’s laws 

implicitly require an instantaneous interaction, several 

scientists subsequently proposed a finite speed of 

gravity, mainly in order to explain observed deviations 

from Newton’s laws like the perihelion precession of 

Mercury. However, it was already argued in 1805 by 

Laplace (transl.1966) that a finite speed would cause 

planetary orbits to quickly become unstable due to the 

directional aberration, in contradiction to experience. 

Whilst this led Laplace to conclude that gravitational 

interaction occurs with a speed many orders of 

magnitude larger than the speed of light, if not infinitely 

fast, in modern times this apparent paradox is resolved 

within the framework of General Relativity. (see e.g. 

Carlip (2000)) . 

 

However, it does in fact not require General  Relativity 

to resolve the paradox as Laplace’s argument (as 

illustrated by Fig.1) was inconsistent in the first place, 

even in a pre-relativistic setting 

 
Fig1  Inconsistent model for retarded gravitational 
interaction  using instantaneous center of mass as 
reference point 

 

Here we have two equal masses 
1

m and 
2

m orbiting 

their common center of mass in a circular orbit. If the 

gravitational interaction is not instantaneous but happens 

with a finite speed, this would result in 
2

m acting on 

1
m not from its instantaneous position

2
P  but from a 

position 
'

2
P  at an earlier point of the particle 

trajectory/orbit corresponding to the travel time of the 

interaction. If gravity would in this way be originating 

from a past ‘ghost image’ of 
2

m rather than 
2

m itself, 

this would, according to this argument, lead to a non-

radial force component which would accelerate 
1

m in its 

orbit, making the latter quickly unstable, contradictory to 

experience.  

However, this argument is erroneous: first of all, the 

concept of a center of mass/gravity as used here implies 

already (instantaneous} Newtonian interaction, so it is 

inconsistent to use this in combination with a retarded 

interaction (which is a non-Newtonian concept in this 

respect). If the masses indeed interact with the opposite 
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‘ghost’ mass, the center of mass should be defined with 

regard to this ghost mass as well, not with regard to the 

instantaneous mass (which becomes physically 

irrelevant here). 

 

Secondly, and more to the point, it is in fact inconsistent 

to consider the situation in the center of mass frame 

when trying to figure out which forces are acting on 

1
m due to the retarded interaction  The retarded time and 

potential has to be evaluated from the view point of the 

target mass i.e. 
1

m in this case. In electrodynamics, the 

Lienard-Wiechert potential is analogously derived by 

strictly considering the trajectory of the source particle 

in the reference frame of the test particle (this does not 

imply any dynamical consequences for the interaction 

between the two but merely represents the relative 

position of the source particle with regard to the test 

particle in a purely kinematical way). Although Fig.1 

pretends to represent the positions of 
2

m and '
2

m  as 

they appear to 
1

m , it does actually not do this, The 

correct graphic for describing the orbit of 
2

m with 

regard to 
1

m is shown in Fig. 2.  

 
Fig2  Correct model for retarded two-body interaction 
with orbital motion referred to one of the masses 

 

With regard to 
1

m (the target mass), the radius of 

curvature of the orbit is actually r2  not r as suggested 

by Fig. 1, i.e. the vector from 
1

m  to any point on the 

orbit is always a radial vector. So the retarded position 

'

2
P has in fact the same distance from 

1
m  as the 

instantaneous position
2

P , contrary to what Fig.1 is 

suggesting.  The latter (and thus the claim a finite speed 

of gravity would lead to unstable orbits) is thus only the 

result of inconsistently applying Newtonian concepts to 

a non-Newtonian problem. (non-Newtonian in the sense 

that the interaction is retarded, not that it has to be 

treated fully relativistically (this is termed ‘propagation-

delayed Newtonian gravity' by Carlip (2000))). 

 

For circular orbits, like in the above illustrated case, 
1

m  

will always see the same gravitational potential as the 

distance to any point on the relative orbit of 
2

m  is the 

same. This means that even for a retarded interaction, 

1
m will in this case only see a radial force component 

(the same as for instantaneous interaction) and will thus 

not be dynamically affected by the speed of gravity. The 

only effect will be a certain phase offset in the orbit, 

otherwise there is no difference to the instantaneous 

case.  

 

The calculation presented below will indeed confirm that 

dynamical changes only occur for eccentric orbits, 

because the retarded potential is only sensitive to 

changes in the radial distance of the two masses but not 

transverse motions. This is discussed for instance in 

detail in a recent paper by Smid (2019) showing the 

effect of a finite signal propagation speed on the 

apparent configuration of moving particle distributions. 

Equating the effect of retardation with directional 

aberration (as Carlip (2000) and others have done) 

misses therefore not only the point but leads to incorrect 

conclusions (whether or not there is actually an 

aberration). As is evident from Fig. 2, aberration as such 

does not change the distance and therefore not the 

gravitational potential (which is the quantity the present 

analysis is based on). 

 

Possibly because of the incorrect (and irrelevant) 

argument regarding the aberration, the effect of retarded 

gravity on solar system dynamics has never been 

quantitatively determined, be it classically or within the 

framework of General Relativity. Many authors maintain 

that in the latter context retarded interaction would be 

implicitly contained in the relevant equations, but this is 

clearly incorrect, as is evident from the JPL publication 

by Moyer (1971):  the non-Newtonian contribution to 

the 1-body problem (Eq.(20) there) is derived on the 

basis of the static Schwarzschild metric, in which the 

space and time intervals are understood as instantaneous 

quantities (as confirmed in personal communication with 

JPL) i.e. retarded gravity is not taken into account.. The 

present treatment shows however that the retardation 
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effect should indeed lead to observable differences in the 

precession rates of some planets unless gravity 

propagates at least with more than ten times the speed of 

light (given present observational accuracy). 

 

The theoretical basis for this work was laid already in 

the recent publication by Smid (2019) which solved 

analytically the retardation equation both for rectilinear 

and circular particle trajectories, this merely needed to 

be extended to be applicable to Kepler orbits. 

Additionally, the present approach also allows for a 

finite size as well as a rotation of the central mass. The 

resulting correction terms for the gravitational potential 

due to the retardation effect are then integrated along a 

complete Kepler orbit via a perturbation approach to 

yield the apsidal precession rate 

 

An apsidal precession is indeed the only consequence to 

be expected from the finite propagation of gravity in the 

two-body problem as energy and angular momentum 

conservation can be assumed to hold (the system being a 

closed one) and thus the other orbital elements should 

not be affected. 

 

1.1 RETARDED POTENTIAL OF POINT MASS 
 

In order to calculate the retarded position of the source 

mass (the sun) with regard to the target mass (the 

planet), we assume the latter at the origin at the 

coordinate system and the instantaneous coordinates of 

the centre of the former as yx, . The source mass is 

assumed to be a spherical shell with en effective radius 

R  rotating rigidly with angular velocity ω  in the orbital 

( yx, ) plane ( R  will be related to the actual radius of 

the mass at the final stage of the calculation depending 

on the model assumptions for the radial density 

structure), 

 

A mass element of the shell has therefore the 

instantaneous coordinates 

 

)sin()cos( ϑϕ ⋅⋅+= Rxx
S

                                              (1) 

)sin()sin( ϑϕ ⋅⋅+= Ryy
S

                                              (2) 

)cos(ϑ⋅= Rz
S

                                                               (3) 

 

where ϕ  is the instantaneous rotation angle. 

 

For a rotation with constant angular frequency ω  in the 

yx, plane, the corresponding retarded coordinates are 

then  

 

)sin()cos('' ϑωϕ ⋅∆⋅−⋅+= tRxx
S

                        (4) 

)sin()sin('' ϑωϕ ⋅∆⋅−⋅+= tRyy
S

                         (5) 

)cos(' ϑ⋅= Rz
S

                                                              (6) 

 

where 

 

2

2
' t

a
tvxx x

x
∆⋅−∆⋅−=                                         (7) 

2

2
' t

a
tvyy

y

y
∆⋅−∆⋅−=                                         (8) 

 

are the retarded coordinates of the centre of the rotating 

mass with regard to the planet, assuming the orbital 

velocity and acceleration vectors to be constant during 

the time interval t∆ (the travel time for gravity between 

the corresponding mass element of the central mass and 

the planet) . 

 

The signal travel time t∆  is then obtained from the 

retardation equation 

 

222' tcd ∆⋅=                                                              (9) 

 

where  

 

)',','(
SSS

zyx== 'rd'
S

              .                         (10) 

 

Note that in (9) we use the symbol c  for the speed of 

gravity as a free parameter i.e. without necessarily 

implying that this is identical to the speed of light.  If 

c is indeed interpreted as the speed of light here, the 

retardation equation (9) is nothing but the equation for 

the Minkowski metric on the light cone so it should be 

fully appropriate to calculate the retardation effect in the 

weak field (almost-flat spacetime) limit of General 

Relativity (where distances can be calculated in the 

Euclidean metric with high accuracy). 

 

If we use now a Taylor expansion for the trigonometric 

functions in (4) and (5) up to second order in t∆⋅ω , we 

can write for the square of the retarded distance (9) 
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 ∆⋅
+

∆⋅
+⋅=

2

2

2
2

122 1'
d

tf

d

tf
dd                         (11) 

 

where d is the instantaneous distance 

 

 

222 ρ++= yxd                                                       (12) 

  

with 

 

))sin()cos(()sin(222 ϕϕϑρ ⋅+⋅⋅⋅+= yxRR            (13) 

 

(note that 
2ρ is merely a placeholder for the right hand 

side of (13) here (which is a combination of the 

coordinates for the mass element of the central mass and 

the coordinates of the test mass) and there is no 

particular meaning attached to the variable ρ as such).. 

 

 

Furthermore in (11) we have 

 

−⋅+⋅⋅−= )(2
1

yvxvf
yx

 

           −⋅+⋅⋅⋅− )()cos()sin(2 yvR
x

ωϕϑ   

 

           )()sin()sin(2 xvR
y

⋅−⋅⋅⋅− ωϕϑ                      (14) 

 

 

−⋅−⋅−+= yaxavvf
yxyx

22

2
 

    −⋅+⋅−⋅⋅⋅− )2()cos()sin( 2
xvaR

yx
ωωϕϑ  

    )2()sin()sin( 2
yvaR

xy
⋅+⋅+⋅⋅⋅− ωωϕϑ      (15) 

 

 

 

Inserting (11) into (9) yields a quadratic equation for 

t∆ which has the solution 

 

2
2

2
22

2

1

2

2
1

1

)(
1

)(2

c

f

fcd

f

c

d

fc

f
t

−

−⋅
+

±
−⋅

=∆        (16) 

 

 

Assuming the fractions under the square roots to be 

small against 1, we can use their Taylor expansion up to 

second order, which yields finally (choosing the positive 

sign in front of the square roots as we are interested in 

the retarded solution only and as t∆ is defined as 

positive) 

 















⋅
+

⋅⋅
+

⋅⋅
+⋅=∆

2
2

22

2

11

222
1

c

f

cd

f

cd

f

c

d
t           (17) 

 

where in the final step the remaining expressions 

2

2
fc −   in the denominator of the terms in the bracket 

where replaced by 
2c (which again means neglecting 

higher orders than 
22 / cv  in the series approximation). 

 

Eq.(17) gives directly the correction to the signal travel 

time due to the retardation effect in case of a moving 

source mass. 

 

 

With t∆ thus determined, we can then also derive the 

retarded potential from (11). First, taking the inverse of 

the square root we have  

 

2

2

2
2

11

11

'

1

d

tf

d

tfdd ∆⋅
+

∆⋅
+

⋅=                           (18) 

 

and after a Taylor expansion of the denominator up to 

second order in t∆  

 















⋅

∆⋅⋅
+

⋅

∆⋅
−

⋅

∆⋅
−⋅=

4

22

1
2

2

2
2

1

8

3

22
1

1

'

1

d

tf

d

tf

d

tf

dd
   (19) 

 

Inserting (17) into (19) yields (keeping only terms up to 

2c ) 

 

32

2

1
2

1
2
2

822

1

'

1

dc

f

dc

f

dc

f

dd ⋅⋅
+

⋅⋅
−

⋅⋅
−=          (20) 

 

 

 

If the gravitational interaction constant α  (see below) is 

independent of the positions and velocities of the 
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masses, equation (20) results therefore in a potential 

difference due to the retardation effect 

 

( ) =







−⋅−=∆

dd
u

1

'

1
,, αϕϑr  

        














⋅⋅
−

⋅⋅
+

⋅⋅
⋅=

32

2

1
2

1
2
2

822 dc

f

dc

f

dc

f
α       (21) 

 

where  

 

mMG ⋅⋅=α                                                            (22) 

 

with G the gravitational constant, M the central (solar) 

mass and m the planet mass (we take M as the full 

central mass here, so later we merely average over ϑ and 

ϕ  rather than integrate over differential mass elements). 

(note here that the term linear in 
1

f (i..e. linear in cv / ) 

averages to zero when integrated over a Kepler orbit as it 

is periodical (as will be shown in Sect.2.3), whilst for a 

circular orbit around a point mass all terms in (21) are 

indeed zero (as already qualitatively explained in the 

introduction)). 
 

 

2.2  RETARDED POTENTIAL OF SPHERICAL SHELL 

 

In order to obtain the potential of a spherical shell, we 

have to refer the instantaneous distance d ( as defined in 

the previous section) to a mass element of the spherical 

(rotating) shell rather than the centre of the latter (to 

which we have to refer the orbital position later on), so 

we rewrite (12) as 

 

2

2

1
r

rd
ρ

+⋅=                                                            (23) 

 

with  

 

22 yxr +=                                                          (24) 

 

so we have 

 

2

2

1

11

r
r

d ρ
+⋅

=                                                     (25) 

Assuming now 
22 || r<<ρ we can expand the 

denominator up to order
44 /|| rρ to yield 

 

)
8

3

2
1(

11

4

4

2

2

rrrd ⋅

⋅
+

⋅
−⋅=

ρρ
                                     (26) 

 

(note that the assumption 
22 || r<<ρ  implies 

22
rR << ,  so 

2ρ  is actually dominated by the second 

(periodical) term in (13) which is proportional in order 

of magnitude to rR ⋅ , i.e. the two small terms in (26) are 

actually merely of order rR /  and  

22 / rR respectively). 

 

 

Similarly we get from (25) by means of series expansion 

of the denominator. 

 

)1(
11

4

4

2

2

22 rrrd

ρρ
+−⋅=                                         (27) 

 

)
8

15

2

3
1(

11

4

4

2

2

33 rrrd ⋅

⋅
+

⋅

⋅
−⋅=

ρρ
                            (28) 

 

 

Inserting (26)-(28) into (21) we obtain 

 

( ) −
⋅⋅

+







⋅⋅
+

⋅⋅
⋅=∆

rc

f

rc

f

rc

f
u

2
2

32

2

1
2

1

282
,, αϕϑr  

 

                     +
⋅⋅

⋅
−

⋅⋅

⋅⋅
−

⋅⋅

⋅
−

32

2
2

52

22

1

4

2
1

416

3

2 rc

f

rc

f

rc

f ρρρ
 

        

               







⋅⋅

⋅⋅
+

⋅⋅

⋅⋅
+

⋅⋅

⋅
+

52

4

2

72

42

1

6

4

1

16

3

64

15

2 rc

f

rc

f

rc

f ρρρ
  (29) 

 

 

Averaging over ϕϑ,  gives then the potential correction 

due to the retardation effect for a planet at location r  

due to a rotating spherical shell of radius R  and mass 

M . 
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=∆⋅=∆ ∫ ∫ ),,()sin(
4

1
),(

0

2

0
ϕϑϕϑϑ

π

π π
rr uddRU  

 

                      = ∑
=

∆
9

1k
k

U                                             (30) 

 

where the individual terms resulting from the integration 

are given in Appendix A..1 
 

2.3  PERIHELION PRECESSION DUE TO RETARDED 

POTENTIAL 

 

In order to derive the apsidal precession resulting from 

the retarded potential correction (30) we use a 

perturbation approach outlined by Landau and Lifshitz 

(1976).. For this purpose, we briefly review here the 

corresponding equations for the 2-body problem in 

general and Keplerian orbits in particular. 

 

For the reduced 2-body problem, the angular momentum 

and energy conservation laws can be respectively  

written as 

 

2
r

L

dt

d

⋅
=

µ

φ
                                                               (31) 

 

=+







⋅+⋅= )'()()(

2

222
rU

dt

d
r

dt

dr
E

φµ
 

       )'(
2

)(
2 2

2
2

rU
r

L

dt

dr
+

⋅⋅
+⋅=

µ

µ
                       (32) 

 

where φ,r  are the polar coordinates of the orbiting 

mass, L  its angular momentum, )'(rU  the potential 

energy, E the total energy and 

 

Mm

Mm

+

⋅
=µ                                                                (33) 

 

the reduced mass for the two bodies with masses m and 

M . 

. 

Note that the potential energy is here, contrary to the 

usual formulation of the energy conservation law, a 

function of the retarded distance 'r  between the two 

masses rather than the instantaneous distance r .  

For a circular orbit, we have obviously rr ='  and the 

retarded potential is thus always identical to the 

instantaneous one. In this case, the retardation has no 

effect at all on the orbital dynamics of the system as 

equations (31) and (32) are identical to the instantaneous 

case (see also the discussion in the introduction of this 

paper). The final result of the calculations will only 

confirm this conclusion. 

 

Solving now (32) for dt and inserting into (31), we 

obtain 

 

( ) 222 /)'(2 rLrUEr

dr
Ld

−−⋅⋅
⋅=

µ
φ            (34) 

 

If the motion is finite and we integrate from the 

minimum radius 
min

r to the maximum radius 
max

r and 

back we get thus from (34) for the corresponding angle 

covered 

( )
∫

−−⋅⋅
⋅⋅=

max

min

222 /)'(2

2:

r

r
p

rLrUEr

dr
L

µ
φ (35) 

 

p
φ is thus the polar angle covered during a complete 

radial orbital period from perihelion to perihelion. For 

the motion in a 1/r potential (also for the harmonic 

oscillator potential ~r
2
)  this is exactly π2 and the orbit 

is closed, but for any other potential it will be different 

from this and the orbit will not be closed i.e. the line of 

apsides will be precessing. either forwards or backwards 

depending on the potential. 

 

We first rewrite (35) as 

 

( )∫ −−⋅⋅
∂

∂
⋅−=

max

min

22 /)'(22

r

r
p

rLrUEdr
L

µφ   (36) 

 

and now assume that )'(rU can be described by  

 

)'()'( rU
r

rU ∆+−=
α

                                              (37) 

 

with α given by (22) here and |)'(| rU∆ << |/| rα . 

 

Inserting (37) in (36) and expanding the integrand up to 

first order in )'(rU∆  yields 

 

φπφ ∆+= 2
p

                                                           (38) 
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where 

 

( )
∫

−+⋅

∆⋅

∂

∂
⋅=∆

max

min

22 //2

)'(
2

r

r rLrE

rUdr

L αµ
µφ       (39) 

 

which, using (34),  we can also simply write as 

 














∆⋅⋅⋅

∂

∂
⋅=∆ ∫

π

φφφφµφ
2

0

2 )),('()(
1

rUrd
LL

      (40) 

          

(note that we have removed here the factor 2 introduced 

in (35) and instead integrated over π2 rather than π , as 

the perturbing potential )),('( φφrU∆  is (unlike the 

unperturbed potential r/α−  or the example potentials 

in Landau and Lifshitz (1976) ) not identical in both 

halves of the orbit.). 

 

In order to solve (40), we need to specify the functional 

dependence )(φr  for the ‘unperturbed’ orbit  i.e. for 

0)),('( =∆ φφrU  (which in this case means for 

instantaneous gravitational interaction). This is given by 

the well-known relationship for Kepler orbits 

 

)cos(1
)(

φ
φ

⋅+
=

e

p
r                                                  (41) 

 

where 

 

αµ ⋅
=

2
L

p                                                                  (42) 

 

is a constant of motion (the ‘semi latus rectum’ 

distance}. φ  in this context is also called the ‘true 

anomaly’, whilst e  is the eccentricity  

 

2

2

1
a

b
e −=                                                             (43) 

 

where a and b are the semi-major and semi-minor axis 

of the ellipse respectively, 

 

In order to perform the integration in (40) we also need 

to express )'(rU∆  and thus the position, velocity and 

acceleration vectors for the expansion terms in Appendix 

A.1. as a function of φ . Again,  from the standard 

equation for a Kepler orbit we have 

 

)cos(1

)cos(
)(

φ

φ
φ

⋅+

⋅
=

e

p
x                                                   (44) 

 

)cos(1

)sin(
)(

φ

φ
φ

⋅+

⋅
=

e

p
y                                                  (45) 

 

The velocity and acceleration vectors can here not 

simply be obtained by differentiating x and y but have 

to be determined consistent with (7) and (8) where they 

were assumed as constant within the time interval 

t∆ .For this reason we have to consider the retarded 

coordinates 

 

)cos(1

)cos(
)(

φφ

φφ
φφ

∆−⋅+

∆−⋅
=∆−

e

p
x                             (46) 

 

)cos(1

)sin(
)(

φφ

φφ
φφ

∆−⋅+

∆−⋅
=∆−

e

p
y                             (47) 

 

where φ∆  is the change in the true anomaly during time 

t∆  

 

Using the addition theorem for the trigonometric 

functions, and expanding in terms of φ∆  up to second 

order yields 

 

=∆−−=∆ )()(: φφφ xxx  

 

      +∆⋅
⋅+

⋅
−= φ

φ

φ
2))cos(1(

)sin(

e

p
 

 

      
( )

( )
2

3

2

)cos(12

)(sin1()cos(
φ

φ

φφ
∆⋅

⋅+⋅

+⋅+⋅
+

e

ep
            (48) 

 

 

=∆−−=∆ )()(: φφφ yyy  

  

      +∆⋅
⋅+

+⋅
= φ

φ

φ
2))cos(1(

))(cos(

e

ep
 

.       

      
( )

( )
2

3

2

)cos(12

2)cos(1)sin(
φ

φ

φφ
∆⋅

⋅+⋅

⋅−⋅−⋅⋅
+

e

eep
        (49) 
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By means of Kepler’s second law (which is equivalent to 

the angular momentum conservation law (31)) 

 

Tr

ba

t

πφ 2

2
⋅

⋅
=

∆

∆
                                                        (50) 

 

(where T the orbital period) and using furthermore (41) 

as well as the  relationship 

a

b
p

2

=                                                                     (51) 

 

we can rewrite (48) and (49) as 

 

        

+∆⋅
⋅−

⋅⋅
−=∆ t

Te

b
x

)1(

)sin(2

2

φπ
    

            

( ) 2

232

22

)1(

)(sin1()cos())cos(1(2
t

Te

eep
∆⋅

⋅−

+⋅+⋅⋅+⋅
+

φφφπ
 (52) 

 

 

 

+∆⋅
⋅−

+⋅⋅
=∆ t

Te

eb
y

)1(

))(cos(2

2

φπ
 

 

( ) 2

232

22

)1(

)cos(1)sin())cos(1(2
t

Te

eeep
∆⋅

⋅−

−⋅−⋅⋅⋅+⋅
+

φφφπ
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By comparing (52) and (53) with  (7) and (8) in the form 

 

2

2
' t

a
tvxxx x

x
∆⋅+∆⋅=−=∆                                (54) 

2

2
' t

a
tvyyy

y

y
∆⋅+∆⋅=−=∆                              (55) 

 

we see that 

 

Te

b
v

x ⋅−

⋅⋅
−=

)1(

)sin(2

2

φπ
                                                (56) 

 

Te

eb
v

y ⋅−

+⋅⋅
=

)1(

))(cos(2

2

φπ
                                         (57) 

 

( )
232

22

)1(

)(sin1()cos())cos(1(4

Te

eep
a

x
⋅−

+⋅+⋅⋅+⋅
=

φφφπ
   (58) 

 

 

( )
232

22

)1(

)cos(1)sin())cos(1(4

Te

eeep
a

y ⋅−

−⋅−⋅⋅⋅+⋅
=

φφφπ
 (59) 

 

Note that the sign of the acceleration vector derived here 

is actually opposite to that of the actual (instantaneous) 

orbital acceleration vector. This is merely a consequence 

of the fact that we calculate the retarded from the 

instantaneous position i.e. going against the orbital 

motion. As a result, the linear velocity term in (54), (55) 

‘overshoots’ the retarded position due to the curvature of 

the orbit and has to be ‘pegged back’ by the acceleration 

term in this second order approximation. 

 

 

With this, we have now determined all variables 

required for evaluating the potential terms related to the 

retardation terms (as given in Appendix A1) and can 

calculate the resulting perihelion precession of the 

planetary orbits by means of (40).. We merely have to 

additionally use Kepler’s third law 

 

α

µ
π

3

2
a

T
⋅

⋅=                                                       (60) 

 

(with α and µ  given by (22) and (33) respectively) and 

furthermore replace all occurrences of the orbital length 

constants  a , b and p  through the angular 

momentum L by means of (42), (43) and (51) in order to 

be able to differentiate with regard to L in (40). Doing 

this (using Mathematica) by adding up all the terms 

shown in Appendix A.1, then re-substituting the orbital 

parameters again for L  by using (42) yields the 

following expression for the precession angle (in 

radians) per orbit 

 

ω
φφφφ ∆+∆+∆=∆

Ro
                                          (61) 

 

where 

 

pc

emMG

o
⋅







 −−⋅+⋅⋅

−=∆
2

211)(2π
φ          (62) 

 

is the precession due to the orbital eccentricity (this is 

the only term independent of the radius R of the central 
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mass M i.e. the only non-zero term in the case of point 

masses), Note that 
o

φ∆ is always negative i.e. the 

precession due to the retarded orbital position is always 

retrograde. This circumstance can be qualitatively 

explained by the fact that the retardation effect causes 

the probability density in the receding section of an orbit 

(as seen from any reference point) to be higher than in 

the approaching section (Smid (2019)). In the latter 

reference, the shown examples were for a reference point 

external to a circular rotating ring, but the result is 

qualitatively the same for an internal reference point. 

Fig. 3 shows the result for the reference point at 5.0=x  

and with an anti-clockwise rotational velocity 

cv
r

6.0=  

 
 
Fig.3  Schematic representation of retarded probability 
density for a planet in an anti-clockwise orbit with non-
zero eccentricity (perihelion at x=1) 

 

 

One can interpret this diagram schematically as 

representing the probability density for a planet to be 

found in a given part of an eccentric orbit (with the 

perihelion at x=1 and the aphelion at x=-1 and the focus 

(the sun)  at x=0.5).. It shows the density to be higher in 

the top half (outgoing part) than in the bottom half 

(incoming part) of the orbit. This could obviously not be 

a stable orbit as the time spent in the two symmetric 

halves of the orbit would be different, Therefore the line 

of apsides (in this case the x-axis) has to rotate 

backwards (against the orbital motion) in order to re-

establish symmetry between the two halves. This 

explains. the retrograde precession associated with the 

retardation effect due to the orbital velocity in an 

eccentric orbit as given by (62)  

The term 

 







⋅

⋅⋅
⋅

⋅⋅

+⋅⋅
=∆

2

22

2 3

23

2

)(5

p

Re
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R

π
φ +     

 

               +
⋅

⋅







⋅+⋅+⋅

+
4

442

5

16

387

4

219
93

p

Ree

 

 

           










⋅

⋅







⋅+⋅+⋅+⋅

+
6

6642

4

2

5

8

115
11113

p

Reee

  (63) 

is the precession rate due to the finite radius R of the 

central mass (again, the mass  represents here merely the 

orbital velocity). In contrast to the monopole term (62), 

the precession is here always positive but decreases 

much faster with distance. Referring again to Fig. 3, the 

positive sign of this term can be explained by the 

extended size of the central mass reducing the 

asymmetry between the two halves of the orbit, thus 

reducing the amount of retrograde precession due to the 

retardation effect associated with the monopole term 

(62). Note that this term is non-zero even for circular 

orbits ( 0=e ) due to some terms of order 
44 / pR  and 

higher. 

 

 

The third  term 

 

−
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⋅

⋅
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⋅
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e
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22
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c
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⋅
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−

ωπ
 +





+⋅ )32(

2 2

4

4

e
p

R
 

                          



⋅







+⋅+

⋅

⋅
+ 42

6

6

8

15
51

9

25
ee

p

R
    (64) 

 

is the precession rate due to the rotation of the mass M .  

It consists of two terms, one being always positive and 

depending only on the rotational velocity ω⋅R  and the 

distance, the second being a cross term between the 

rotational and orbital velocity, which is in contrast 

always negative but decreases much faster with distance. 

This means that for large enough distances 
ω

φ∆ will 

change sign from a negative to a positive one. The 

numerical results will show that for the solar system this 
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happens when going from Mars to Jupiter (assuming the 

speed of gravity is identical with the speed of light). 

 

It may not be immediately obvious from the equations, 

but the overall precession due the retardation effect (61) 

is exactly zero for a circular orbit ( )0=e if the 

rotational angular frequency is equal to the orbital 

frequency i.e. if T/2πω = , as in this case the terms in 

(63) and (64) not depending on e cancel exactly. This is 

of course expected as then each mass element of the 

rotating mass has always the same distance to the planet 

and the retardation will have no effect. In general 

though, it is clear that the retarded interaction leads to a 

coupling between the orbital and rotational parameters 

of the masses which should for instance lead to an 

additional tidal locking effect.. Consideration of the 

gravitational retardation effect may therefore well be 

necessary in order to fully understand the development 

of gravitational systems in this respect. 

 

It should again be pointed out again that these equations 

have been obtained on the basis of second order series 

approximations in (effectively) the orbital or rotational 

velocity ratios cv / and the size/distance ratio pR / . As 

only even powers in the series development contribute to 

the results (the odd powers, representing periodical 

variations, average to zero during the orbit integration in 

(40)), the equations have in fact a relative accuracy of 

the order of 
22 / cv  and 

22/ pR .and can therefore be 

considered exact in the present case as the accuracy of 

some of the physical constants going into the 

computation is a couple of orders of magnitude worse. 

 

For realistic theoretical results that can be compared to 

observations, we have now only to additionally adjust 

the terms depending on the radius R of the central mass 

for the fact that the latter is not a spherical shell (which 

effectively assumed a density structure in form of a 

radial delta-function )'( RR −δ ) but a sphere with a 

continuous radial density structure. We can represent the 

latter here through a radial density function )(ρν , 

where 

 

0

:
R

R
=ρ                                                                   (65) 

 

is the fractional radial distance from the centre of the sun 

with regard to its outer radius 
0

R .( 10 ≤≤ ρ ).. 

As the surface of a shell with radius ρ  is proportional to 

2ρ , we can define a corresponding shell mass function 

)(:)( 2 ρνρρµ ⋅=                                                    (66) 

 

(not to be confused with the reduced mass defined in 

(33)), for which the normalization condition holds 

 

1)(
1

0
=⋅∫ ρµρd                                                        (67) 

 

i.e. the total mass integrated over all shells up to the 

outer radius 
0

R .must be M (the mass assumed for the 

shell of radius R .in our delta-function approximation 

for the radial density distribution in our model).. 

 

With this, we are able to re-interpret the variable R .in 

(63) and (64) as the effective radius in our shell model. 

As R .however appears only in the powers 2, 4 and 6 

here, we have to evaluate the corresponding moments of 

the radial mass function i.e. the integrals 

 

)(
1

00
ρµρρ kkk dRR ⋅⋅= ∫                                      (68) 

 

where k=2,4,6. 

 

 

 

 

3. NUMERICAL RESULTS AND DISCUSSION 

 

For evaluating the precession rates as given by (62)-(64), 

the masses (or rather the GM values) of the sun and 

planets (Mercury to Neptune) were taken from the 

DE430 ephemerides, Table 8 (Folkner et al. (2014)) and 

the Keplerian orbital elements (the semi-major axis and 

the eccentricity) from Table 8.10.2 in Standish and 

Williams (2012)).. In the latter case only the significant 

digits not affected by the indicated secular variations 

were taken, which amounted to about 3-5. The speed of 

gravity c was assumed here as the speed of light, also 

taken from the DE430 ephemerides.(Table 4), as was the 

solar radius 
0

R (Table 9). 

The radial density function )(ρν  of the sun (see 

equation (65))  was taken here from the BS2005 table for 

the standard model of the sun (Bahcall et al. (2005)), and 

the corresponding mass function )(ρµ and the values of 

k
R calculated from this via (66)-(68) by summing up all 

the correspondingly normalized and weighted table 

elements. This resulted in 
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1089.0
2

0

2 ⋅= RR  

 

 02797.0
4

0

4 ⋅= RR                                              (69) 

 

01156.0
6

0

6 ⋅= RR  

 

which was inserted in (63) and (64) (in the latter 

equation for the factored-out powers of R ). 

 

As the theoretical model assumes here a rigid rotation of 

the central mass, the rotational period of the sun was 

taken as 27 days (an average value considering the 

latitudinal variation of the solar rotation). 

 

From the precession angles (62)-(64) relating to the 

change of the perihelion position over the course of one 

complete orbit, the usually quoted figure relating to a 

period of a century is obtained by 

 

100
T

 31,557,600
3600360

2
: ⋅⋅⋅⋅

∆
=∆Φ

π

φ
 [arcsec/cy]     (70) 

 

where T is the orbital period in seconds as given by 

(60). 

 

The results are shown in the Table 1. 

 

 
o

∆Φ  
R

∆Φ  
ω

∆Φ  ∑  

Mercury -3.061(-1) +9,962(-6) -4.095(-8) -3.060(-1) 

Venus -6.453(-5) +6.502(-9) -1.098(-9) -6.452(-5) 

Earth/Moon -1.784(-4) +8.179(-9) -1.503(-10) -1.784(-4) 

Mars -1.964(-3) +3.882(-8) -5.655(-13) -1.964(-3) 

Jupiter -2.397(-5) +4.017(-11) +4.608(-13) -2.397(-5) 

Saturn -6.423(-6) +3.207(-12) +6.149(-14) -6.423(-6) 

Uranus -8.870(-7) +1.094(-13) +5.557-15) -8.870(-7) 

Neptune -9.329(-9) +4.665(-16) +1.161(-15) -9.329(-9) 

                 Note   : (x)= *10
x
  , all figures in arcsec/cy 

 

Table 1 Precession rates due to retarded gravitational 
sun/planet interaction with the speed of light c , for the 

individual terms as given by equations (62),(63),(64) + 

(70) and total.( Σ ). 
 

As is evident from (62), 
o

∆Φ  (the only term not 

depending on size or rotation of the sun) is always 

negative i.e. the precession is retrograde, with Mercury 

having by far the highest value of about -0.3 

arcseconds/cy, Mars is the second highest (due to the 

high eccentricity of its orbit), and the other planets 1-8 

orders of magnitude smaller than this, decreasing 

inversely proportional with distance and varying 

additionally due to the dependence on the eccentricity 

(with this term only being non-zero for 0>e ). 

 

The multipole contribution 
R

∆Φ  due to the finite size 

of the sun is in contrast always positive but several 

orders of magnitude smaller  because of the small factors 

nn pR / .applied to the contributing terms in (63)  (note  

that the term with 
22 / pR  disappears for 0=e , but the 

higher order terms contribute also in case of a circular 

orbit). 

 

The term 
ω

∆Φ  due to the rotation of the sun consists 

(as already mentioned below (64)) of a negative term 

coupled to the orbital velocity and a positive term solely 

due to the sun’s rotational velocity. The latter term 

decreases less quickly with distance and dominates for 

larger distances. In this case it means that 
ω

∆Φ  is 

negative for the inner planets (up to Mars) and positive 

for the outer planets. However, the absolute value of this 

term is so small (less than a micro-arcsecond even for 

Mercury) that it is hardly observable, even if the speed 

of gravity would be much less than  c . 

 

The total precession due to the retardation effect of solar 

gravity is thus almost solely given by the orbital point 

mass term 
o

∆Φ   and results in a retrograde rotation of 

the line of apsides for all planets.  For Mercury and Mars 

(the planets with the highest eccentricities) the effect is 

large enough that it should be considered in 

corresponding orbital modeling. Yet from the recent 

publication of Park et al. (2017) (which is based on the 

same algorithm used to produce the DE430 

ephemerides) it is evident that a retardation effect of this 

magnitude is not observed. The precession rate of 

Mercury’s orbit derived in their study is solely 

composed of Newtonian contributions plus the static 

Schwarzschild and Lense-Thirring effects from General 

Relativity. (the planetary contributions differ from the 

Newtonian results in Stewart (2004) only by about 10% 

of the retardation effect derived here (of which 9% are 

due to the fact that in the latter publication the masses of 

Jupiter’s and Saturn’s moon have apparently been 

neglected), so the Sun-Mercury retardation effect could 

not have inadvertently been included in the planetary 

contributions in Park et al. (2017)). As the space-time 

curvature due to the mass of the sun would only 
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introduce corrections to the Euclidean retardation values 

of the order of 
22 / cv , the precession due to the 

retardation effect resulting from the full PPN- equation 

of motion should essentially be the same as that derived 

in this work. The incompatibility of this term with the 

analysis of Park et al. (2017) (assuming c  as the speed 

of light) raises therefore the question whether retarded 

gravity has in fact been correctly taken into account in 

their algorithm, or whether indeed the speed of gravity 

could be much higher than the speed of light (at least as 

far as the solar system is concerned, where as yet the 

speed of gravity could not be conclusively  confirmed  

by observations). 

 

It would be interesting to see a similar analysis to that in 

Park et al. (2017) for the case of Mars (and the other 

planets), but these do not appear to have been 

undertaken or published yet, although at least for Mars 

high accuracy data are available as well at JPL/NASA 

due to VLBI  and spacecraft measurements (Folkner et 

al. (2014)). 

 

The equations obtained here show that the precession 

effect due to retarded gravity increases strongly with 

increasing orbital velocity as well as eccentricity. The 

effect should therefore be even much stronger for 

instance for close binary stars in an eccentric orbit. For 

the well known Hulse-Taylor binary pulsar               

(PSR 1913+16) one obtains indeed, after inserting the 

relevant mass and orbital data (Taylor and Weisberg 

(1989)) into the above equations, a (retrograde) 

precession of -0.3 deg/y (assuming the speed of gravity 

as c) , which amounts to almost 10% of the measured 

total precession of +4.22 deg/y. (the effect of the rotation 

is even more negligible here than for the solar system 

due to the small size of the pulsar). Considering that the 

measurements are claimed to have a relative accuracy of 

at least 10
-5

, this would therefore be highly relevant and 

could provide a further constraint for the speed of 

gravity. 

 

Considering the results of this paper, it is clear that a 

correct interpretation of the fine details of observed 

secular precession rates is in general not possible 

without having the question regarding the speed of 

gravity conclusively answered one way or another, and 

the corresponding retardation effect properly being taken 

into account in the solar system modeling.  In this sense, 

the conclusion of Iorio (2017) for instance that 

Verlinde’s theory of emergent gravity could be tested by 

observations of the secular precession rates of Mars and 

Mercury must be seen as premature, as the retardation 

effect derived in this paper could potentially mask any 

small non-standard effect if it is not explicitly included 

in the modeling. 

 

4. CONCLUSIONS AND OUTLOOK 

 

The present work has derived analytical expressions for 

the retarded gravitational potential of a translating and 

rotating spherical mass on the basis of a flat spacetime 

metric approximation. Integrating these over a complete 

Kepler orbit via a perturbation approach has proved 

conclusively that a finite speed of gravity leads to a 

precession of the apsides in the gravitational 2-body 

problem. Applied to the planetary orbits in the solar 

system, the resulting precession turns out to be negative 

(i.e. retrograde) for all planets, being predominantly 

determined by the square of the ratio (orbital velocity/ 

speed of gravity) and eccentricity. If the speed of gravity 

is taken as the speed of light (as General Relativity 

requires), .the numerical value for the precession rate 

exceeds the claimed observational accuracy by far for 

some planets and should therefore be readily evident in 

corresponding data. However, a recent publication of 

Park et al. (2017) regarding the precession of Mercury’s 

orbit shows no trace of the retardation effect, modeling 

the precession through Newtonian plus static GR terms 

only. This would indicate a mis-modeling of the solar 

system dynamics well above their claimed error level. 

Only if the speed of gravity is at least about 10 times the 

speed of light, would the retardation effect become 

insignificant for Mercury’s secular precession rate, 

which however (like any speed different from c ) would 

be problematic to reconcile with the theory of General 

Relativity. (despite the fact that the retarded potential 

only depends on radial motion, not on directional 

aberration as implied by Carlip (2000) and others).. 

Whatever the reason for this apparent inconsistency is, 

accurate observations of precession rates of planetary 

orbits should be an as yet unrecognized and convenient 

way to confirm the speed of gravity from solar system 

dynamics. Using accurate precession measurements of 

binary star orbits (as it is possible for instance for 

systems containing a pulsar) the constraint for the value 

of the speed of gravity could be pushed even further. 
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APPENDIX A.1 

 

EXPANSION TERMS FOR THE RETARDED POTENTIAL CORRECTION 

 

 

Inserting (29) into (30) gives the following expansion terms for the gravitational potential correction (exact up to 

order 
22 / cv in the orbital and rotational velocities and to order 

22 / rR in the size of the central mass). For 

identification, the first 3 terms are due to the terms linear in 
1

f  in (29) (the first term in each line; these are 

periodical and vanish in the orbit integration). The terms 4-9 are the remaining terms in sequence as in (29). Of these, 

only 
4

U∆ and 
5

U∆ are non-zero for a central point mass. All the other terns are due the finite radius of the central 

mass and/or its rotation.. 
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