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Abstract—The retardation equation for straight line signal 
propagation is solved analytically for the two-dimensional case 

and used to plot the retarded positions graphically for a variety 

of particle distributions moving relatively to the observer. The 

results show that in case of a finite signal propagation speed the 

observed particle distribution must appear as 

expanded/compressed if it moves towards/away from the 

observer. The apparent change of scale of the distribution goes 
hereby along with an inverse change in particle density.  

 
Index Terms—signal propagation, retardation equation, particle 

distribution functions 

I. INTRODUCTION 

 

he finite propagation speed of signals in general is a well 

known phenomenon  not  only for  physicists   but also for     
laymen. Everybody knows that we can calculate the 
approximate distance of a thunderstorm from the time 
difference between the lightning flash and the rumble of 
thunder and the speed of sound.. Everybody also intuitively 
understands that we see the stars in the sky not as they are 
today but as they were in the past corresponding to their 
distance and the speed of light. What is not so obvious is the 
fact that in case of moving objects, this retardation effect also 
makes us see them in a different position than they are at the 
moment of observation. Not only this, but since any 
distribution of particles has a finite extension, its apparent 
configuration  will in general appear changed as well due to 
the different distances of its parts to the observer leading to a 
time-layered picture.  

 
The concept of retarded interactions due to finite signal 
propagation speed is of course nothing new in theoretical 
physics, having been developed already in the early to mid 
19th century in the context of classical electrodynamics by 
Gauss, Riemann, Weber, Lorenz and Maxwell, and 
culminating later on in the derivation of the retarded 
electromagnetic potential of a moving point charge by Liénard 
and Wiechert.. However, further implications for fundamental 
aspects of physics have only been studied in connection with 
the theory of Special Relativity.. For instance, Lampa [1], 
Terrel [2], Penrose [3] , Weisskopf [4] Boas [5], Müller and 
Boblest [6]  have discussed the visual appearance of fast 
moving objects for some regular shapes like rods, cubes or 
spheres, while Deissler [7] developed an algorithm applicable 

to arbitrarily shaped objects.. However, whilst these works 
have included the retardation effect into the theory, they did 
not consider it on its own but only in combination with the 
relativistic length contraction effect, which makes it 
didactically difficult to unambiguously illustrate the 
implications of the retardation effect. And for problems where 
one just wants to derive the actual (i.e. instantaneous) 
positions of a particle distribution in the observer’s reference 
frame from the observed retarded positions, those results 
would not be applicable anyway. 
 
Furthermore, all these previous works consider the retardation 
effect to be merely an apparent optical one as they are only 
concerned about the resultant projection of the object’s shape 
into the observer’s plane. This circumstance suppresses crucial 
features of the full retardation effect and has thus not only has 
led to conclusions in those papers (like the claimed ‘rotation’ 
effect) that are, as the result of the present paper will prove, at 
least misleading, but it also ignores the wider physical 
implications. It is well known for instance that retardation 
crucially affects the electrostatic interaction between moving 
particles (Liénard-Wiechert potential). In the latter context, 
Aguirregabiria et al. [8] derived actually the shape of a 
relativistically moving sphere in real space rather than as a 
projection, but still considered only its outline by doing an 
appropriate transformation of the equation of a sphere, which 
however ignores the fact that matter is not distributed truly 
continuously but consists of individual particles.  

 
In contrast to those above mentioned works in Special 
Relativity (where the apparent shape of objects in the 
observer’s reference frame was compared to their rest-frame 
shape), the present paper only studies the transformation from 
the instantaneous (actual) to the retarded (observed) particle 
positions in the observer’s reference frame. An additional 
Lorentz transformation to the rest frame of the particle 
distribution and thus a corresponding relativistic length 
contraction is therefore not applicable here. (as much as it is 
not applicable for instance in the derivation of the retarded 
potentials in electrodynamics). 
Furthermore, the present paper takes a novel approach by first 
deriving an algebraic solution to the retardation equation 
transforming the given instantaneous to the retarded 
coordinates, and then uses this to do a point for point 
transformation for each particle of a given discrete particle 
distribution (linear, square array, circular; in the latter case a 
rotational velocity is considered as well)). In this way, the full 
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information regarding the retardation effect is retained, unlike 
previous works showing only projections of outlines of the 
resulting distributions. 

II. CALCULATION OF RETARDED POSITIONS 

 
Because we are interested in the retarded positions as they 

appear to the observer, we have to consider the situation in the 

latter’s reference frame. And assuming that the signal 

propagation speed c  is constant throughout space and 

furthermore independent of the velocity of the emitting 

particle, the emission time 't  and observation time 
0

t  are 

related to the corresponding retarded distance 'd  between the 

points of emission and absorption through 

 

)'('
0

ttcd −⋅=                                                              (1) 

 

(note that the symbol c  can indicate any kind of signal 

propagation here, not just the speed of light; it could for 
instance be the speed of sound if the observer is at rest in the 

medium (so that c  does not depend on the velocity of the 

emitter as required above). 
 

For the present study (which should only demonstrate the 

fundamental effects of the finite signal speed on observed 

particle distributions) we can restrict ourselves to a 2-
dimensional scenario. As the algebraic results are intended to 

be used directly for numerical/graphical computations, it is 

furthermore beneficial if we formulate the equations in terms 

of the corresponding Cartesian yx, coordinates. We thus can 

write 
 

2

0

2

0
)'()'(' yyxxd −+−=                                 (2) 

 

where ),(
00

yx  are the (fixed) coordinates of the observation 

point.. 
In order to simplify a comparison of the results, we make now 

the convention 

 

0)0',0'(' === yxt                                                      (3) 

 

i.e. a signal from the origin is emitted at 0'=t  (and thus 

observed at cyxt /2

0

2
0

0
+= .).  

 
 

II.1 Constant Uniform Velocity 

 

In case of a constant velocity ),(
yx

vv  of the whole particle 

system, a particle at coordinate ),( yx  at time 0'=t  will 

have the coordinates )','( yx  at time 't  

 

'' tvxx
x
⋅+=                                                                   (4) 

'' tvyy
y
⋅+=                                                                  (5) 

 

To clarify the meaning of the variables again, 
000

,, tyx  is 

the fixed observer location and time (assuming 

cyxt /2

0

2
0

0
+= ) , yx, designates the (given) source 

particle location at time 0'=t  (the emission time for a 

particle at the origin to be observed at time 
0

t at 
00

, yx ), 

whereas the unknowns ',' yx and 't designate the retarded 

location and time of that particle required to be observed at 

time 
0

t at 
00

, yx as well). The velocity components 

yx
vv , should in principle also be retarded quantities, but as 

they are assumed constant here, we can afford to write them 

unprimed. 

 

 

Inserting (4) and (5) into (2) and squaring the resulting 

equation yields a quadratic equation for 't  which has the 

solution 

222
00

22
2

00

22
'''

yx
vvc

yyxxyx
ttt

−−

⋅⋅−⋅⋅−+
+= m   (6) 

 
with 

 

( ) ( )
222

000
2

0
'

yx

yx

vvc

yyvxxvtc
t

−−

−⋅−−⋅−⋅
=                   (7) 

(the variable '
0

t  does mot have a particular meaning here; it 

is only introduced in order be able to write (6) in a more 

compact format so that it fits into the 2-column layout, and as 

it reduces to 
0

t for a particle at rest, this particular notation 

was chosen). 

 

With this definition, the negative sign in front of the square 

root in (6) applies for 0222 >−−
yx

vvc  and the positive 

sign for 0222 <−−
yx

vvc  (note again that c  denotes 

here a signal propagation speed in general, not just the speed 
of light, so both cases are in general formally possible on this 

basis, although the latter case will not be discussed here)..This 
corresponds to the retarded solution of (2), whereas the 

opposite sign in the two cases corresponds to the advanced 

solution (which is not considered here as it would violate 

causality). 
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Equation (6) yields thus the retarded time (i.e. time of 

emission of the signal) of a particle which is at position 

),( yx  at time 0'=t and moving with velocity ),(
yx

vv  for 

an observation at position ),(
00

yx . at time 
0

t .. 

The corresponding retarded positions are then simply obtained 

from (4) and (5). 
Note that the above equations are exact for all velocities as 

they involve no approximation (provided the velocities are 

constant between times 0'=t and 
0

' tt = ). 

 
II.2 Constant Uniform Velocity + Rotation 

 

If the distribution is located on a circle with radius r  and 

rotates around its centre with angular velocityω , with the 

whole distribution additionally having a constant velocity, (4) 

and (5) have to be replaced by 

 

')'cos(' tvtrx
x
⋅+⋅+⋅= ωϕ                                     (8) 

 

')'sin(' tvtry
y
⋅+⋅+⋅= ωϕ                                        (9) 

 

Assuming 1t'<<⋅ω  (which effectively means that the 

rotational velocity cv
r
<<  as rv

r
⋅=ω  and crt /|'| ≈  

because of convention (3))  and applying the addition theorem 

to the trigonometric functions and using a Taylor expansion of 

 )t'cos( ⋅ω and  )t'sin( ⋅ω up to second order in  t'⋅ω  we 

obtain analogously to (6) and (7) 
 

 

yxyx
vrvvc

yxrr
ttt

,

222

00

2
2

00

))sin()cos((2
'''

⋅⋅−−−

⋅+⋅⋅⋅−
+=

ω

ϕϕ
m (10) 

 

with 

 

yxyx

yx

vrvvc

Rryvxvtc
t

,

222

0110

2

0
'

⋅⋅−−−

⋅⋅−⋅−⋅−⋅
=

ω

ω
             (11) 

 

where 

 

)cos(
01

ϕ⋅−= rxx                                                  (12) 

)sin(
01

ϕ⋅−= ryy                                                 (13) 

)sin()cos(
000

ϕϕ ⋅−⋅= xyR                                 (14) 

−⋅⋅−⋅= )cos()2(
0,

ϕωxvv
yyx

 

            )sin()2(
0

ϕω ⋅⋅−⋅− yv
x

                             (15) 

 

(the variables defined in (12)-(15) have no specific meaning 

but are only placeholders in order to enable a more compact 

form of (10) and (11).) 

 

Analogously to the case of a constant velocity (to which (8)-

(11) are easily seen to reduce for 0=ω ) the negative sign in 

front of the square root in (11) applies if the denominator of 

0'
0
>t   and the positive sign if it is 0< .). 

 

III.  NUMERICAL RESULTS 

 

The retarded positions of different particle distributions have 

been numerically evaluated on the basis of the equations in 

Sect.2. By the nature of convention (3), all distributions 

remain centered around the origin (a particle at the origin is 

unaffected by the retardation) so the changes of the shape of 

the distributions as a result of the finite signal propagation 

speed can be compared directly (effectively, we always choose 

an observation time so that the observer sees the centre of the 

distribution at the origin).. Given the nature of the problem, 

the results depend obviously crucially on the observer location 

as well as the velocity vector(s) of the particle distribution 

with regard to the observer, so this information is added to all 

figure captions in order to avoid confusion. 

 

All graphical plots were produced with Mathematica V9 on 

the basis of the equations derived in this paper, 

 

 

III.1 One-Dimensional case 

 

We consider here just a number of particles equidistantly 

distributed on the x-axis, with the center of the distribution 

observed at the origin. The below graphs shows the result for 

the cases a) instantaneous particle positions (circles), b) 

retarded positions for distribution moving towards the 

observer with velocity cv
x

5.0= (squares, offset from the x-

axis for clarity), c) retarded positions for distribution moving 

away from the observer with velocity cv
x

5.0−= (triangles, 

offset from the x-axis for clarity). . In either case, the observer 

has been assumed at 0,3
00
== yx . 

 

 
Fig.1 Effect of retardation on moving linear particle distribution 

 

 

As the numerical results show, the observed retarded 

distribution appears expanded or compressed compared to the 

instantaneous one depending on whether it is approaching or 
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receding with regard to the observer. It is easy to show (see 

Appendix A.1. that the retarded distribution is in this case in 

fact given by the equation 

 

cv

x
x

x
/1

'
−

=                                                                  (16) 

 

(it can also be shown from the general equations (4)-(7) above, 

but this is algebraically not exactly straightforward). 

 

This means obviously that not only are the endpoints between 

the two distributions expanded/contracted but also the distance 

between the individual particles and thus the particle density 

i,e 

)1()('
0 c

v
v x

x
−⋅= ρρ                                             (17) 

where 
0

ρ is the instantaneous particle density. 

From (16) and (17) it follows immediately that 

 

dxdx ⋅=⋅
0

'' ρρ                                                             (18) 

which reflects the particle conservation law (the total number 

of particles is obviously unchanged by the apparent expansion 
or compression of the scale of the distribution resulting from 

the finite propagation speed of the signal; this applies to any 

sub-volume as well). 

 

 

 

III.2 Two-Dimensional case 

 

In contrast to the previous section we assume now a square 

grid of points in the region x=-1 to 1 and y=-1 to 1 at intervals 

of yx ∆∆ , =0.25 for the instantaneous distribution (Fig.2) 

 

 
 

Fig.2 Instantaneous positions for square array 
 

The following two plots show the retarded positions if the 

whole distribution is moving, analogously to Sect. II.1, with 

speed cv
x

5.0= and cv
x

5.0−=  towards and away from 

the observer (again assumed at  0,3
00
== yx ) with 

0=
y

v  

 

 
 

Fig.3 Retarded distribution for cv
x

5.0= , 0=
y

v  for an 

observer position and time 3
0
=x , 0

0
=y , cxt /

00
=  

 

 

 
 

Fig.4 Retarded distribution for cv
x

5.0−= , 0=
y

v  for an 

observer position and time 3
0
=x , 0

0
=y , cxt /

00
=  

 

 

Note that in all three plots above the scales of the units are 

identical, so the apparent sizes of the particle distributions can 

be compared directly. 

 

It is obvious that the two-dimensional result for motion 

parallel to the x-axis is just a generalization of the one-

dimensional case, with the expansion/contraction of the 

distribution being less pronounced for parallels along the x-

axis according to the projection of the particles velocity vector 

on the line of sight. The latter circumstance also means that 

the two dimensional distribution depends on the location of 

the observer on the x-axis. For significantly more distant 
observation points, the velocity vectors of all particles deviate 

much less from the line of sight, so the expansion/ 

compression is much more uniform across the whole 

distribution, essentially approaching the one-dimensional case 

as given by (17) and (18). The below plot shows for instance 
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the solution for cv
x

5.0= , so analogously to Fig.3, but now 

with the observer at 10
0
=x  

 

 
 

Fig.5 Retarded distribution for cv
x

5.0= , 0=
y

v  for an 

observer position and time 10
0
=x , 0

0
=y , cxt /

00
=  

 
 

A different picture arises if the distribution is moving along 

thee y-axis i..e. perpendicular to the line of sight of the 

observer. For 0=
x

v , cv
y

5.0= , we obtain the following 

distribution 

 

 
 

Fig.6 Retarded distribution for 0=
x

v , cv
y

5.0=  for an 

observer position and time 3
0
=x , 0

0
=y , cxt /

00
=  

 

 

In this case (with the observer position again located at 

0,3
00
== yx ) the distribution is barely expanded or 

contracted (only slightly in the y-direction), but merely 

sheared due to the retardation effect (which results in particles 

at positive x being observed at a later time compared to a 

particle at the origin and particles with negative x at an earlier 

time.). For larger distances of the observer the 

expansion/compression is even smaller and indeed disappears 

completely for ∞→
0

x . 

 

For some reason most of the references cited in this paper (and 

also some educational textbooks like that of Greiner [9]) 

describe the appearance of a transversely moving cube as a 

rotated one, but even though they refer only to the projection 

of this distribution (and the projection of a sheared and rotated 

distribution would be the same here if relativistic length 

contraction is additionally taken into account), it is at least 

misleading to suggest the distribution would be rotated in 

space (this was pointed out already in 1972 by Matthews and 

Lakshmanan [10]). As the retarded position must lie on the 

particle trajectory, a rotation is obviously physically 

impossible if all parts of the object move on a straight line 

(which is the assumption here). 

 

 

 In case of the velocity vector of the distribution being parallel 

to the x,y diagonal (i.,e. for cv
x

5.0= , cv
y

5.0= we have 

essentially a combination of Figs, 3 and 6 

 

 
 

Fig.7 Retarded distribution for cv
x

5.0= , cv
y

5.0=  for an 

observer position and time 3
0
=x , 0

0
=y , cxt /

00
=  

 

 

III.3 Rotating Distributions 

 

For the case of a rotating (but otherwise stationary) ring, we 

obtain on the basis of the equations in Sect. II.2 the following 

retarded distribution for 1,1 == rc  and 5.0=ω / 
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5.0−=ω  respectively (i..e. 5.0=
r

v ), with the observer 

again located at 0,3
00
== yx  
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Fig.8 Retarded distribution for ring rotating with 

cv
r

5.0= anti-clockwise for an observer position and time 

3
0
=x , 0

0
=y , cxt /

00
=  

 
 

 
 

Fig.9 Retarded distribution for ring rotating with 

cv
r

5.0= clockwise for an observer position and time 

3
0
=x , 0

0
=y , cxt /

00
=  

 

Since all particles are confined to moving on a circular path 

(in anti-clockwise direction for this example), there is in this 

case no distortion of the shape as a whole but merely of the 

particle density on the ring itself. The interpretation is 

straightforward here on the basis of the previous sections:   

parts of the circle that are receding from the observer due to its 

rotation are compressed (i.e. have a higher density) parts that 

are approaching are expanded (i..e  have lower density).  

(it should be noted here that unlike for the uniform velocity 

results shown earlier, the plots for the rotating distribution are 

not quite exact here as the corresponding Eq. (11) is only 

accurate up to orders of  
22

/ cv
r

; these plots should 

therefore only be considered as qualitative illustrations of the 

effect,) 

 

If we additionally have the rotating ring move as a whole with 

a uniform velocity in the x±  direction, we obtain a 

combination of Fig.8 with the expansion/compression effect 

shown in Figs.(3) and (4) 

 

 
 

Fig.10 Retarded distribution for ring rotating with cv
r

3.0=  

anti-clockwise and moving with cv
x

3.0= , 0=
y

v  for an 

observer position and time 3
0
=x , 0

0
=y , cxt /

00
=  

 

 
 

Fig.11 Retarded distribution for ring rotating with cv
r

3.0=  

anti-clockwise and moving with cv
x

3.0−= , 0=
y

v  for an 

observer position and time 3
0
=x , 0

0
=y , cxt /

00
=  
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whereas for the rotating distribution moving additionally in 

the +y direction we obtain a combination of Fig.(8) with Fig. 

(6) 

 
 

Fig.12 Retarded distribution for ring rotating with cv
r

3.0=  

anti-clockwise and moving with 0=
x

v , cv
y

3.0=  for an 

observer position and time 3
0
=x , 0

0
=y , cxt /

00
=  

 

 

Again, for all these plots the scales of the units are identical, 

so the particle distributions are directly comparable. 

 

 

III.3 High Velocity/ Close Distance Effects 

 

A strange effect appears if the distribution approaches the 

observer so fast that some parts of it have already passed the 

observer when the midpoint is still seen at the origin.. In this 

case the part of the distribution still approaching the observer 

will appear as expanded but the part having passed already as 

compressed. The distance of the observer to the distribution 

(which in the above examples had only a minor effect on the 

results) plays obviously a crucial role in this case. The below 

plot shows how the unit square array of Fig (2) looks for an 

observer at 2.1
0
=x if it is moving towards him with 

cv
x

8.0=  

 
 

Fig.13 Retarded distribution for cv
x

8.0= , 0=
y

v  for an 

observer position and time 2.1
0
=x , 0

0
=y , cxt /

00
=  

 

With the central particle (by definition) still at the origin at 

this moment, some particles have already passed the observer 

and thus this ‘downstream’ distribution appears to have a 

higher density compared to the instantaneous case, whereas 

the ‘upstream’ distribution has a lower density (see also 

Figs.(3) and (4)). 

 

 

IV. CONCLUSIONS AND OUTLOOK 

The present work has obtained detailed graphical results that 

illustrate the effect of a finite signal propagation speed on the 

perceived spatial configuration of a moving particle 

distribution. In contrast to other results discussing only the 

photographic projection of the resulting shape of objects, the 

full spatial information is preserved here (albeit only for a 2D-

scenario in order to be graphically representable) and most 

importantly, the point-for-point transformation for the 

individual particles has additionally revealed information 

about the apparent density changes within the distribution. 

Being able to fully visualize the effects of a finite signal 

propagation speed in this sense should be helping teachers as 

well as students to better understand the intricacies introduced 

by the time layering in the signal retardation for moving 

particle distributions and avoid misleading conclusions based 

only on their projections and/or outlines. It should also be 

realized that even though the retarded distributions are only 

apparent (i.e. observer dependent) ones and thus do not imply 

any internal changes in the objects themselves , they are lastly 

the only physically relevant ones as the instantaneous particle 

distribution can by definition never be seen directly for finite 

signal propagation speeds. This may thus not only require a 

corresponding correction in the interpretation of observational 

data, but also in the modelling of the physical interaction of 

objects in motion, as some simplifying assumptions (like the 

shell theorem for spherical distributions) may not be 

applicable anymore. 
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APPENDIX A.1 

ALGEBRAIC DERIVATION OF RETARDED POSITIONS 
FOR A ONE-DIMENSIONAL ARRAY 

 

In order to better understand the various numerical results 

resulting from the full 2D-equations in Sect.II and discussed in 

Sect.III, it is instructive to derive the retarded positions 

immediately algebraically for the simple case of a one 

dimensional problem. i.e. for the distribution, its velocity 

vector and the observer all located on the x-axis. The 

argument is similar to that given in some textbooks like 

Griffiths [11]. (this could also be derived as a special case of 

the general equations in Sect.II, but it is algebraically quite 

involved and anything but straightforward).. 

 

If we have a number of point charges at locations x  within a 

finite length L and this whole configuration moving with 

speed v  with regard to the observation point 
0

x (assumed 

> )x  on the same line. The retardation condition in this case is 

 

)'('
0

ttcxx −⋅=−                                                       (A.1.1) 

 

where ',' tx  is the point and time of emission and tx ,
0

the 

point and time of detection. If we select the zero point of the 

time variable such that ctx =
0

, the retardation condition is 

thus 

 

'' tcx ⋅=                                                                       (A.1.2) 

 

For the location of a uniformly moving charge, we have 

furthermore the constraint 

 

'' tvxx ⋅+=                                                                 (A.1.3) 

 

where x is the position of the charge at 0'=t ., from which 

we get immediately 

 

cv

x
x

/1
'

−
=                                                                 (A.1.4) 

 

 

This means that for 0>v (array approaching the observer) the 

scale of the distribution appears as expanded (x’>x) and for 

0<v (array receding from the observer) it appears as 

compressed., as confirmed by the numerical results based on 

the more general equations derived in Sect.II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


